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Introduction. Quantum mechanical decoherence, dissipation and measurements
all involve the interaction of the system of interest with an environmental system
(reservoir, measurement device) that is typically assumed to possess a great
many degrees of freedom (while the system of interest is typically assumed
to possess relatively few degrees of freedom). The state of the composite
system is described by a density operator ρ which in the absence of system-bath
interaction we would denote ρs ⊗ ρe, though in the cases of primary interest
that notation becomes unavailable, since in those cases the states of the system
and its environment are entangled. The observable properties of the system are
latent then in the reduced density operator

ρs = tre ρ (1)

which is produced by “tracing out” the environmental component of ρ.

Concerning the specific meaning of (1). Let
{
|n)

}
be an orthonormal basis

in the state space Hs of the (open) system, and
{
|N)

}
be an orthonormal basis

in the state space He of the (also open) environment. Then
{
|n)⊗|N)

}
comprise

an orthonormal basis in the state space H = Hs ⊗He of the (closed) composite
system. We are in position now to write

tre ρ ≡
∑ {

Is ⊗ (N|
}
ρ

{
Is ⊗ |N)

}

↓
= ρs · tr ρe in separable cases

The dynamics of the composite system is generated by Hamiltonian of the
form

H = Hs + He + H i



2 Motion of the reduced density operator

where

Hs = hs ⊗ Ie

=
∑

m,n

∑

N

〈m|hs|n〉
{(

|m〉 ⊗ |N〉
)
·
(
〈n|⊗ 〈N|

)}

He = Is ⊗ he

=
∑

n

∑

M,N

{(
|n〉 ⊗ |M〉

)
·
(
〈n|⊗ 〈N|

)}
〈M|he|N〉

H i =
∑

m,n

∑

M,N

(
|m〉 ⊗ |M〉

){(
〈m|⊗ 〈M|

)
H i

(
|n〉 ⊗ |N〉

)}(
〈n|⊗ 〈N|

)

—all components of which we will assume to be time-independent.

Interaction picture. In the Schrödinger picture one has (on the assumption that
the Hamiltonian is time-independent)

i! ∂t|ψ〉t = H |ψ〉t =⇒ |ψ〉t = U(t)|ψ〉0 with U(t) = e−(i/!)H t

Looking to the quantum motion of the expectation value of a time-independent
observable A , we in the Schrödinger picture have

〈A〉t = t〈ψ|A |ψ〉t = 0〈ψ|U+(t)A U(t)|ψ〉0

which in the Heisenberg picture becomes

= 0〈ψ|A t|ψ〉0 with A t ≡ U+(t)A0 U(t)

giving
i! ∂t A = [A , H ]

Compare this with the equation that in the Schrödinger picture is satisfied by
the density matrix ρ ≡ |ψ〉〈ψ|:

i! ∂tρ = [H , ρ ]

which entails ρt = U(t)ρ0 U+(t). We have

〈A〉t =
{

tr
{
ρt A0

}
in the Schrödinger picture

tr
{
ρ0 A t

}
in the Heisenberg picture

which shows very clearly the distinction between and equivalence of the two
pictures.

Suppose now that the Hamiltonian can be resolved into the sum

H = H0 + H1
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of an “easy/uninteresting part” H0 and a relatively “difficult/interesting part”
H1. In the absence of H1 we would have |ψ〉0 −→ |ψ〉t = exp

[
− i

! H0t
]
|ψ〉0 so

the time-dependent unitary transformation

|ψ〉t −→ |Ψ〉t = exp
[
+ i

! H0t
]
|ψ〉t

produces a state vector that in the absence of H1 would not move at all. In the
presence of H1 we have

i! ∂t|Ψ〉t = exp
[
+ i

! H0t
]{

− H0|ψ〉t + i! ∂t|ψ〉t
}

= exp
[
+ i

! H0t
]{

− H0|ψ〉t +
(
H0 + H1

)
|ψ〉t

}

= U –1
0 (t)H1 U0(t)|Ψ〉t with U0(t) ≡ exp

[
− i

! H0t
]

≡ G(t)|Ψ〉t (2)

where the hermiticity of the time-dependent operator G(t) is manifest, as is the
fact that G(t) → I in cases where H1 → 0 . We now have

〈A〉t = t〈ψ|A |ψ〉t = t〈Ψ|B(t)|Ψ〉t
where

B(t) ≡ U –1
0 (t)A U0(t)

executes simple H1-independent Heisenberg motion:

i! ∂t B(t) = [B(t), H0]

The solution of (2) is famously difficult to construct (involves chronological
ordering), but has necessarily the form

|Ψ〉t = V(t)|Ψ〉0 : V(t) is unitary
↓
= |Ψ〉0 for all t in cases where H1 vanishes

From |ψ〉t = U0(t)|Ψ〉t = U0(t)V(t)|Ψ〉0 = U0(t)V(t)|ψ〉0 = U(t)|ψ〉0 we see
that we have in effect factored U(t) = exp

[
− i

! (H0 + H1)t
]
, and have thus

placed ourselves in position to write

〈A〉t = tr
{
ρt A0

}
= tr

{
U0(t)V(t)ρ0 V –1(t)U –1

0 (t)A0

}

= tr
{

V(t)ρ0 V –1(t) · U –1
0 (t)A0 U0(t)

}

in which ρ is propelled (prograde) by

V(t) = e+(i/!)H0 t · e−(i/!)(H0+H1) t (3)

while A is propelled (retrograde) by U0(t) = e−(i/!)H0 t.

The expression on the right hand side of (3) is easy to write down but in
typical cases is difficult to evaluate explicitly. In favorable cases one can appeal
to Campbell-Baker-Hausdorff theory, but more commonly one works from

i! ∂t V(t) = G(t)V(t) : G(t) ≡ U –1
0 (t)H1 U0(t)

which is a version of (2), follows directly from (3), and can be formulated
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V(t) = V(0) + 1
i!

∫ t

0
G(s)V(s) ds

and by iteration gives

V(t) = ℘← exp
{
− i

!

∫ t

0
G(s) ds

}
· V(0) (4)

where ℘← is the chronological ordering operator. Typically (as in QED) H1

is time-dependent (abruptly/slowly switched on then off): in such cases one
cannot write U(t) = exp

{
− i

! (H0+H1)t
}

so (3) fails and one has no alternative
but to work from (4).

From (2)—which describes the motion of |Ψ〉t in the interaction picture—
we get

i! ∂t ρ(t) = [G(t),ρ(t)] (5.1)

where ρ(t) = |Ψ〉t t〈Ψ| = U –1
0 (t)ρt U0(t) is the interaction picture version of the

density operator. Equivalently,

ρ(t) = ρ(0) + 1
i!

∫ t

0
[G(s),ρ(s)] ds (5.2)

Returning with these ideas to the quantum theory of open systems, it
becomes natural to
• identify Hs + He with H0;
• identify H i with H1.

Working first in the Schrödinger picture, we have

ρt = U(t)ρ0 U –1(t) ⇐⇒ i! ∂tρt = [H , ρt]

where ρt and H both refer to the total (composite) system. Tracing out the
environmental terms, we get1

ρst = tre

{
U(t)ρ0 U –1(t)

}
⇐⇒ i! ∂stρt = tre

{
[H ,ρt]

}

I know from low-dimensional numerical experiments that the spectrum of ρ••ρst

is time-dependent, so the transformation ρs0 −→ ρst cannot be unitary (even
though the experiments indicate that it is trace-preserving). Breuer &
Petruccione (their page 114) draw

ρt1 ←−−−−−−−−−−−−−−−−−−→ ρt2 ≡ U(t2, t1) ρt1U
–1(t2, t1)

↓ ↓
ρst1 ≡ tre ρt1 −−−−−−−−−−−−→ ρst2 ≡ tre ρt2

1 Compare Heinz-Peter Breuer & Francesco Petruccione, The Theory of
Open Quantum Systems (), page 112.
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to emphasize that, while the transformations T(t2, t1) : ρt1 −→ ρt2 are clearly
elements of a group with an obvious composition law T(t3, t2)T(t2, t1) = T(t3, t1),
obvious identity T(t, t) and obvious inversion law T –1(t2, t1) = T(t1, t2), the
induced transformations Ts(t2, t1) : ρst1 −→ ρst2 are not elements of a group:
they satisfy the same composition law, but are non-invertible. To invert
Ts(t2, t1) one would, as step #1 (see the diagram), have to invert ρt2 −→ ρst2
which—since the step entails loss of information (is essentially projective)—is
impossible. The transformations Ts(t2, t1) are elements not of a group but of a
semi group.

In realistic situations we do not know nearly enough about the quantum
mechanics of the environment—the quantum mechanics generated by He+H i to
permit us to proceed by direct application of the process diagrammed above to
useful information about the process of interest: Ts(t2, t1) : ρst1 −→ ρst2 . What
we need is an approximation scheme that permits us to describe the evolution
of ρs in terms of operators that act on Hs, and into which the physics generated
by He and H i enters only in a simplified way, as an “influence.” Equations that
accomplish that objective are called “master equations,” and come in several
flavors. My own discussion of this subject borrows from the following sources:
Maximillian Schlosshauer, Decoherence & the Quantum-to-Classical Transition
(), especially Chapter 4 (“Master-equation formulations of decoherence”);
H.-P. Breuer &F. Petruccione, The Theory of Open Quantum Systems (),
especially §3.2.1–4; U. Weiss, Quantum Dissipative Systems (3rd edition ),
§2.3.

Quantum dynamical map. We work from

ρst = tre

{
U(t)ρ0 U –1(t)

}
(6)

and from the assumption that initially ρ0 factors

ρ0 = ρs0 ⊗ ρe0

We assume moreover—quite unrealistically (!), but in service of our formal
objective—that we possess the spectral resolution of ρe0:

ρe0 =
∑

α

λα|φα〉〈φα|

where the λα are positive real numbers that sum to unity. Let
{
|ψβ〉

}
comprise

and orthonormal basis in He, and with its aid construct

ρst =tre

{
U(t)ρ0 U –1(t)

}

=
∑

β

[
Is ⊗ 〈ψβ |

]
U(t)

[
ρs0 ⊗

∑

α

λα|φα〉〈φα|
]
U –1(t)

[
Is ⊗ |ψβ〉

]

Use
[
ρs0 ⊗

∑

α

λα|φα〉〈φα|
]

=
∑

α

[
Is ⊗

√
λα|φα〉

]
ρs0 ⊗ 1

][
Is ⊗

√
λα〈φα|

]
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to obtain (since
[
ρs0 ⊗ 1

]
= ρs0)

ρst =
∑

α,β

Wαβ(t) ρs0 W+
αβ(t) (7.1)

with √
λα

[
Is ⊗ 〈ψβ |

]
U(t)

[
Is ⊗ |φα〉

]
≡ Wαβ(t)

√
λα

[
Is ⊗ 〈φα|

]
U+(t)

[
Is ⊗ |ψβ〉

]
= W+

αβ(t)
(7.2)

The dimensions of the matrices that enter into the preceding definitions conform
to the following pattern

=

where the short sides have length s, the long sides have length s + e. It now
follows from

∑
β |ψβ〉〈ψβ | = Ie, normality 〈φα|φα〉 = 1 and

∑
α λα = 1 that

∑

α,β

W+
αβ(t)Wαβ(t)

=
∑

α

λα

[
Is ⊗ 〈φα|

]
U+(t)

[
Is ⊗

∑

β

|ψβ〉〈ψβ |
]
U(t)

[
Is ⊗ |φα〉

]

=
∑

α

λα

[
Is ⊗ 〈φα|

]
U+(t)

[
Is ⊗ Ie

]
U(t)

[
Is ⊗ |φα〉

]

=
∑

α

λα

[
Is ⊗ 〈φα|

]
Is+e

[
Is ⊗ |φα〉

]

=
∑

α

λα

[
Is ⊗ 〈φα|

][
Is ⊗ |φα〉

]
by Is· Is = Is and Ie|φα〉 = |φα〉

=
∑

α

λα

[
Is ⊗ 1

]

= Is (8)

Returning with this information to (7.1), we have

tr
{
ρst

}
= tr

{
ρs0 ·

∑

α,β

W+
αβ(t)Wαβ(t)

}
= tr

{
ρs0

}
= 1

Note that we could but need not identify
{
|ψα〉

}
with

{
|φα〉

}
, as Breuer &

Petruccione elected to do.

Equations (7) do provide a description of ρs0 +−→ ρst, but presume that
we possess information—the spectral representation of ρe0, an evaluation of
U(t) = exp

{
− (i/!)(hs ⊗ he + H i) t

}
—that in realistic cases we cannot expect

to have. It is, in this respect, gratifying to observe that in the absence of
system-environmental interaction we have U(t) = Us(t) ⊗ Ue(t) and (7) reads
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ρst =
[
Us(t) ρs0 Us

+(t)
]
⊗

∑

α,β

〈ψβ |Ue(t)|φα〉λα〈φα|Ue
+(t)|ψβ〉

=
[
Us(t) ρs0 Us

+(t)
]
⊗ tr

{
Ue(t) ρe0 Ue

+(t)
}

= Us(t) ρs0 Us
+(t)

The motion of ρst has in the absence of interaction become unitary. It is the
presence of the

∑
α,β that destroys the unitarity of (7).

Breuer & Petruccione write

ρst =
∑

α,β

Wαβ(t) ρs0 W+
αβ(t) ≡ V(t)ρs0 (9)

where V(t) is an operator (what Breuer & Petruccione call a “super-operator”)
that achieves a certain linear reorganization of the elements of ρs0. Suppose,
for example, that Hs is 2-dimensional, and that ρs0 can be represented

ρ••ρs0 =
(

ρ0,11 ρ0,12

ρ0,21 ρ0,22

)

Then the upshot of (9) can be described





ρt,11

ρt,12

ρt,21

ρt,22



 =





V11,11(t) V11,12(t) V11,21(t) V11,22(t)
V12,11(t) V12,12(t) V12,21(t) V12,22(t)
V21,11(t) V21,12(t) V21,21(t) V21,22(t)
V22,11(t) V22,12(t) V22,21(t) V22,22(t)









ρ0,11

ρ0,12

ρ0,21

ρ0,22





and abbreviated

,ρ••ρst = V(t) ,ρ••ρs0

Proceeding on the assumption that it is possible to write V(t) = exp
{
L t

}
we

are led to a differential equation of “Markovian” form

d
dt ,ρ••ρst = L ,ρ••ρst

This equation illustrates the explicit meaning of the equation that Breuer &
Petruccione write

d
dt ρst = Lρst (10)

and call the “Markovian quantum master equation.” We undertake now to
develop the explicit meaning of the Lρst.

Suppose Hs to be n-dimensional. Let operators Fi, i = 1, 2, . . . , n2 span
the space of linear operators on Hs. Assume without loss of generality that the
Fi are orthonormal in the tracewise sense

(Fi, Fj) ≡ 1
n tr

{
F+

i Fj

}
= δij
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Assume more particularly that F1 = I . The remaining basis operators are then
necessarily traceless: (F1, Fi #=1) = 0 ∼ tr

{
Fi #=1

}
. For any linear operator A on

Hs we have

A =
n2∑

i=1

Fi (Fi, A)

In particular, we have

Wαβ =
n2∑

i=1

Fi (Fi, Wαβ)

which by (9) gives

V(t)ρs0 =
n2∑

i,j=1

∑

α,β

Wαβ(t) ρs0 Wαβ
+ (t)

=
n2∑

i,j=1

∑

α,β

(Fi, Wαβ)(Fj , Wαβ)∗

︸ ︷︷ ︸

Fi ρs0 Fj
+

cij(t)

Taking now into account the unique simplicity of F1 = I , we have

Lρst = ċ11ρs0 +
n2∑

i=2

(
ċi1 Fi ρs0 + ċ1i ρs0 Fj

+
)

+
n2∑

i,j=2

ċij Fi ρs0 Fj
+

All the computational difficulty resides now in the functions ċij(t). At t = 0
those become constants aij ≡ ċij(0) and the preceding equation reads

Lρs0 = a11ρs0 +
n2∑

i=2

(
ai1 Fi ρs0 + a1i ρs0 Fj

+
)

+
n2∑

i,j=2

aij Fi ρs0 Fj
+

= a11ρs0 +
(
Fρs0 + ρs0 F+

)
+

n2∑

i,j=2

aij Fi ρs0 Fj
+ (11)

which serves to define the action of the “super-generator” L. Here

F ≡
n2∑

i=2

ai1 Fi =⇒ F+ =
n2∑

i=2

a1i Fi
+ by the hermiticity of ‖cij(t)‖

Resolving F into its hermitian and anti-hermitin parts

F = 1
2

(
F + F+

)
+ 1

2

(
F − F+

)
≡ g − iH

we have
(
Fρs0 + ρs0 F+

)
= −i

(
Hρs0 − ρs0 H

)
+

(
gρs0 + ρs0 g

)

and find that (11) can be written
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Lρs0 = −i[H , ρs0] + {G ,ρs0} +
n2∑

i,j=2

aij Fi ρs0 Fj
+ (12)

with
G = 1

2a11 I + g

From
ρst = eLtρs0 = ρs0 + t · Lρs0 + · · ·

and the previously established fact that tr
{
ρst

}
= tr

{
ρs0

}
we conclude from

(12) that

0 = tr
{(

2G +
n2∑

i,j=2

aij Fj
+ Fi

)
ρs0

}
: all ρs0

whence

G = − 1
2

n2∑

i,j=2

aij Fj
+ Fi

Equation (12) now presents what Breuer & Petruccione call the “first standard
form”

Lρs = −i[H , ρs] +
n2∑

i,j=2

aij

(
Fi ρs Fj

+ − 1
2{Fj

+ Fi,ρs}
)

(13)

of the description of the action achieved by the super-generator L.

Further progress requires that we sharpen what we know about the
coefficients

cij(t) ≡
∑

α,β

(Fi, Wαβ)(Fj , Wαβ)∗

It is, as previously remarked, immediate that ‖cij(t)‖ is hermitian. Moreover

∑

i,j

v∗i cijvj =
∑

α,β

∣∣∣
( ∑

k

(vk Fk, Wαβ)
)∣∣∣

2
! 0 : all complex vectors v

so the eigenvalues of ‖cij(t)‖ must all be non-negative. The same can, of course,
be said of ‖aij‖. And of the sub-matrix that results from restricting the range
of i and j, as is done in (13).

Let uip be elements of the unitary matrix that diagonalizes ‖aij‖:

aij =
∑

p,q

uipΛpqūjq with ‖Λpq‖ =





λ2 0 . . . 0
0 λ3 . . . 0
...

...
. . .

...
0 0 . . . λn2
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Equation (13) becomes

Lρs = −i[H ,ρs] +
n2∑

i,j,p,q=2

uipΛpqūjq

(
Fi ρs Fj

+ − 1
2{Fj

+ Fi,ρs}
)

= −i[H ,ρs] +
n2∑

i,j,p,q=2

λpδpq

(
uip Fi ρsūjq Fj

+ − 1
2{ūjq Fj

+uip Fi, ρs}
)

= −i[H ,ρs] +
n2∑

p=2

λp

(
Ap ρs Ap

+ − 1
2 Ap

+ Ap ρs − 1
2 ρs Ap

+ Ap

)
(14)

with

Ap =
n2∑

i=2

uip Fi

The operators Ap, p = 2, 3, . . . , n2 are called “Lindblad” operators, and

d
dt ρst = −i[H ,ρst] +

n2∑

p=2

λp

(
Ap ρst Ap

+ − 1
2 Ap

+ Ap ρst − 1
2 ρst Ap

+ Ap

)

︸ ︷︷ ︸

(15)

D(ρst)

is called the “Lindblad equation.”2 The H term generates a unitary motion
which is distinct from that which in the absence of system-environmental
interaction would have been generatd by Hs; the interaction term H i was seen
above to enter into the construction of H = i 1

2

(
F − F+

)
. It is the “dissipator”

D(ρst) that accounts for the non-unitarity of ρs0 +−→ ρst.

Much freedom attended our selection of an orthonormal basis
{

I , F2, F3, . . . Fn2
}

in the “Liouville space” of linear operators on Hs, so the expression on the right
side of (15) is highly non-unique. If, for example, we write

√
λp Ap =

∑

q

upq

√
µq Bq

we obtain

D(ρst) =
n2∑

p=2

λp

(
Ap ρst Ap

+ − 1
2 Ap

+ Ap ρst − 1
2 ρst Ap

+ Ap

)
(16)

=
n2∑

p,q,r=2

(
upq

√
µq Bqρstūpr

√
µr Br

+

− 1
2 ūpr

√
µr Br

+ upq

√
µq Bq ρst − 1

2ρst ūpr

√
µr Br

+ upq

√
µq Bq

)

2 Breuer & Petruccione cite G. Lindblad, “On the generator of quantum
mechanical semigroups,” Commun. Math. Physics 48, 119–130 (1976).
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which, if we impose the unitarity assumption
∑

p upqūpr = δqr, becomes

D(ρst) =
n2∑

q=2

µq

(
Bq ρst Bq

+ − 1
2 Bq

+ Bq ρst − 1
2 ρst Bq

+ Bq

)

which is structurally identical to (16). Or consider

Ap +−→ Ap + ap I

which (working again from (16)) sends

D(ρst) +−→D(ρst) +
n2∑

p=2

λp

{ (
ap ρst Ap

+ − 1
2 Ap

+ap ρst − 1
2 ρst Ap

+ap

)

+
(

Ap ρstāp − 1
2 āp Ap ρst − 1

2 ρstāp Ap

)}
+ 0

↓

D(ρst) + 1
2

n2∑

p=2

λp

{
ap [ρst, Ap

+] − āp[ρst, Ap ]
}

↓

D(ρst) +
[
ρst,

1
2

n2∑

p=2

λp

(
ap Ap

+ − āp Ap

)]

The additive term can be absorbed into a redefinition of the effective
Hamiltonian:

H +−→ H + i 1
2

n2∑

p=2

λp

(
ap Ap

+ − āp Ap

)
(17)

Note the manifest hermiticity of the added term.

Weiss3 provides this simpler-looking version of the Lindblad equation (15):

d
dt ρst = −i [H ,ρst] + 1

2

n2∑

p=2

λp

(
[Ap ρst, Ap

+] + [Ap, ρst Ap
+]

)

︸ ︷︷ ︸
D(ρst)

3 Ulrich Weiss, Quantum Dissipative Systems (3rd edition ), page 11.
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notational remark: Breuer & Petruccione’s notation D(ρs)
serves well enough to signify a “function of (the matrix elements
of) an operator, though DDD(ρs) would better emphasize that we
are talking about an operator valued function of an operator. One
would expect in that same spirit to write V(ρs, t) and L(ρs) where
Breuer & Petruccione elect to write V(t)ρs and Lρs, even though
the “super-operators” V(t) and L are defined always by their
functional action, never as stand-alone objects. It’s my guess that
they do so to motivate the train of thought that follows from writing
V(t) = exp

{
V t

}
. In these respects the matrix notation to which I

alluded on page 7 provides a more frankly informative account of
the situation.

Alternative derivation of the Lindblad equation. The results obtained in the
preceding section are formally exact, but acquire their exactitude from the
seldom/never justified assumption that we possess an exact description of

U(t) = exp
{
− (i/!)[Hs + He + H i]t

}

In their §3.3.1 Breuer & Petruccione develop a line of argument that avoids that
strong assumption—an argument that owes its success to certain simplifying
assumptions (which is why Weiss3 considers the Lindblad equation to be valid
“in the Born-Markov approximation). We work in the interaction picture, where
operators generally (and H i in particular) move as directed by [Hs + He] and
where the density matrix of the composite system moves as directed by the
(now time-dependent) interaction Hamiltonian4

H i(t) ≡ U0
+(t)H i U0(t) with U0(t) ≡ exp

[
− i [Hs + He]t

]

Thus
d
dtρ(t) = −i[H i(t),ρ(t)]

↓

ρ(t) = ρ(0) − i

∫ t

0
[H i(s),ρ(s)] d

Insert the latter into the former (inspired idea!)

d
dtρ(t) = −i[H i(t),ρ(0)] −

∫ t

0
[H i(t), [H i(s),ρ(s)]] ds

trace out the environmental degrees of freedom, assume (on what grounds?)
that

tre[H i(t),ρ(0)] = 0s

4 Here I revert to my former asumption that we have adopted units in which
! = 1.



Alternative derivation of the Lindblad equation 13

to obtain

d
dtρs(t) = −

∫ t

0
tre[H i(t), [H i(s), ρ(s)]] ds

↓

≈ −
∫ t

0
tre[H i(t), [H i(s), ρs(s) ⊗ ρe]] ds

{ weak coupling, or
born approximation

↓

≈ −
∫ t

0
tre[H i(t), [H i(s), ρs(t) ⊗ ρe]] ds

{
time-localized
“Redfield equation”

To achieve the markoff approximation we must eliminate all reference to
history (here: the “start time,” which in the previous discussion was built into
the structure of U(t, 0)), To that end, write s = t − u

↓

= +
∫ 0

t
tre[H i(t), [H i(t − u),ρs(t) ⊗ ρe]] du

= −
∫ t

0
tre[H i(t), [H i(t − u),ρs(t) ⊗ ρe]] du

and let the upper limit ↑ ∞:

= −
∫ ∞

0
tre[H i(t), [H i(t − u), ρs(t) ⊗ ρe]] du

This Born-Markoff master equation approximates the Lindblad equation (15) in
a sense (i.e., under physical conditions) that Breuer & Petruccione attempt to
summarize on their page 131, but which I am not yet in position to discuss.5

5 For a helpful discussion of this entire topic, see the class notes of Andrew
Fisher at http://www.cmmp.ucl.ac.uk/ajf∼course notes/node35.html. Fisher
cites Breuer & Petruccione’s Chapter 3 (especially §3.2) and also lecture notes
by John Preskill (quantum information class at Caltech).


